
Scaling coding
agents (without
breaking your
dev team)

AI Engineering
12 September 2025

 
 

andrewfisher
@ajfisher.social

Good afternoon. My name is AJ Fisher and
I’m a fractional CTO. I work at the
intersection of tech, business and
experience, focusing on team performance
systems for transformation and innovation.

As you can imagine, AI has rapidly become
a huge part of what I work on with my
teams.

So it’s been a pretty wild couple of years.

AI coding tools have gone from no good
(and expensive), to good enough, and now
cheap enough and effective enough to
deploy at scale across teams.

https://www.linkedin.com/in/andrewfisher/
https://bsky.app/profile/ajfisher.social


From scarcity to abundance For 50+ years of software engineering, dev
time has been the most precious, scarce
commodity we had. Suddenly - almost
overnight - we’ve gone from famine… to
flood.

And this flood of capacity changes things
dramatically.

But this isn’t the first time. History shows it
happening again and again — but the
Industrial Revolution feels the most similar
to what is happening to us now.



History rhymes Before mechanisation, goods were
handcrafted and scarce. Output was linear
— proportional to the skilled labour you
could bring to bear.

Mechanisation unleashed chaos. Factories
churned out shoddy goods, cities exploded
overnight, professions collapsed, accidents
maimed workers. Fast, messy, frightening.

Feels familiar? More merge conflicts, code
sprawling everywhere, agents going rogue
— same chaos, different century.

But out of that chaos came supply chains,
labour laws, standardised parts, quality
assurance, and management science.

We needed new systems to tame the
chaos of abundance.



Outdated work systems With the scarcity of developer time. Our
systems evolved to protect it — filtering,
prioritising, saying “no” more than “yes.”

Now that scarcity is being removed, those
systems are less relevant.

As we shift into code generation
abundance, we’ll be forced to redesign our
systems to capitalise on it.



Agenda

Making context cheap

The right way is the easy way

Orchestrate activity

>

>

>

So today’s focus is these three areas.
Each one will help both your agents and
your humans scale.



Making context cheap Over the last 20 years, codebases have
exploded in size and complexity. What
once took a dev a day or two to onboard
now takes weeks.

For a new mid-level engineer, that’s fine.
For an agent? You’ve got about ten
seconds before it goes off the rails [can
your systems deliver context that fast?].

If you don’t get them context instantly, they
spin off into rabbit holes, burn tokens, and
deliver junk.

So - need to build context faster, more
accurately.



Context drivers

Logical structures

Deep documentation

>

>

Two levers to pull: logical repo structures
and deep, layered documentation.



Logical structures Agents are bad at spanning repos. Helper
libs are invisible to training data. Just like a
dev staring at an import and asking: “What
is this? Where are the docs?”

So we need to adopt a monorepo mindset.
Co-locate what belongs together. Clear
app delineation, shared libs, utilities.

And watch file sprawl — in JS land, a
single button might mean one file for the
component, another for types, another for
routes. For humans it’s annoying; for
agents it’s confusing. Sometimes it’s better
to scroll more and give them the whole
picture in one place.

A rule of thumb: if a change routinely
spans three or more files just to “see the
picture,” co-locate them.



Deep documentation Docs should zero in humans and agents
alike. Think of it like a ladder leading you
down into your codebase:

Root README (run sheet)
App/component READMEs (how-to)
JSDoc/PyDoc (why/how at the code seam)

This layering helps get everyone up and
going fast.

Every tool wants you to have an agents file
as well. These are fine, but they are for
quirks you’ve seen agents struggle with.
Agents and humans look at the readme -
agents files are to specifcally nudge code
agents in a particular direction.



Homework

Build documentation ladders

Validate completeness

>

>

Obviously where you're deficient you can
use agents to help produce docs and your
code assistants to produce things like in-
code JS Doc or Pydoc info. That speeds
things up.

Once that’s in place, get an agent to
sanity-check: “Are these docs still valid?”
They’ll flag drift, you apply the expertise.
Everyone gets the benefit

And with that we’ll look at tool use and
automation.



The easy way is the right way How often does someone forget
conventional commits? Or not run the
schema build script for validating API
payloads? Happens all the time.

Culture and team norms fill the
documentation gap for humans. Agents
don’t have culture.



The easy way is the right way

Automations > documentation

Hooks for quality

Reference patterns

>

>

>

So you need systems to drive these
behaviours for consistency as consistency
enables scaling:



Automation > documentation

make clean && make install && make dev

That should be all it takes to spin up a dev
environment.

Docs are a suggestion. Scripts are a
guarantee.

If twenty grads joined tomorrow, you could
hand them a wiki page and hope… or a
script that just works. Same with agents.

Every common action needs a script or CLI
command.

Then you add it to your README file so all
developers know it exists and what it does
and when you might use it.

Output good help text. So humans and
agents alike can recover when something
goes wrong.



Hooks for quality Add guardrails right where code gets
created such as Linting and tests on
commit. But we want to do deeper checks
on push — vuln scans, static analysis and
this should happen somewhere else.

Use red flags for risk:

Package changes
New external
URLs/hosts
New shell
commands

As things scale up reviewers need alarms,
not Easter eggs.

1
2

3



Reference patterns Reference code shows both humans and
agents “this is how we do it.” It’s style
transfer — a superpower for LLMs but
really handy for new members of the team
too.

Consistency helps humans and agents
alike.

Skeletons, boilerplates, templates: they
save time, reduce variance, and make
reviews faster.



Homework

Scripts for common tasks

Local and remote hooks for quality

Build boiler plate / reference implementations

>

>

>

Here's a few things you might want to
consider as homework

Now lets turn our attention to getting
agents to use all this structure and tools to
build things with us.



Orchestrate work Now let’s talk about the work itself.

Every dev is about to become an agent
herder. And it’s nothing like managing
people.

You’re asking developers to manage a
school of super-intelligent goldfish…
[pause] ...with the lifespan of a fruit fly.

That’s coding agents: brilliant, forgetful,
relentless, ephermeral.

If everyone spins them up ad hoc, you’ll
drown in chaos and merge conflicts.



Agent work orchestration

Microtasks

Parallelism

Coordination

>

>

>

The answer to this is orchestration to help
tame the chaos.



Microtasks Agents have tiny context windows and no
memory. Keep tasks small and tightly
defined.

Big, vague jobs? They wander. Like the
time I asked Gemini to refactor React
components into Astro. It wandered off
building new components I didn’t ask for.

The fix? Smaller scope, clearer outputs,
faster iteration loops to give feedback.



Parallelism Once you’ve got microtasks, run them in
parallel. Different agents, different tasks.
eg API backend and front end changes.

Converge them in a consolidation branch.

Use common PRDs or specs to help link
the microtasks together. Some tools can
do this like Claude Code - others not so
much.

How much parallelism makes sense is a
feel question, but this is what drives a big
chunk of speed improvements in your
team.



Coordination Finally, coordination.

The goal: turn that school of goldfish into a
shoal — all moving the same way, not
darting randomly bumping into each other.

Macro-tasks still need humans to
coordinate with each other. Then the
engineer orchestrates microtasks and
parallelism underneath.

As your scale picks up, it means ever more
coordination between the engineers
because an agent isn’t going to ask on
Slack, “Hey, is anyone working on this
file?” That’s still on us as humans to plan.

My teams are investing a bit more time in
planning as a result.



Summary

Making context cheap

The right way is the easy way

Orchestrate activity

>

>

>

So, three ways to scale code agents
without breaking your team.



Thriving in abundance We’re moving from scarcity to abundance
for code generation. That abundance will
force us to redesign our systems.

It’s not about replacing engineers. It’s
about building systems so humans and
agents can do more together than either
could alone.

If we build these systems well then they
will help us get on with tackling the big
challenges of our organisations and deliver
better experiences to our customers.

Here’s my details.



Scaling coding agents
(without breaking your dev
team)

Additional resources: 

 

 

  

This talk was developed on the traditional lands of the Bunurong people, Victoria.

All images, unless otherwise attributed, produced using ChatGPT / Dall-E or Stable

Diffusion models.

https://ajfisher.me/aieng

andrewfisher

@ajfisher.social

@ajfisher

https://ajfisher.me/aieng
https://www.linkedin.com/in/andrewfisher/
https://bsky.app/profile/ajfisher.social
https://github.com/ajfisher

